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ABSTRACT

Covert channels through shared processor resources
provide secret communication between malicious pro-
cesses. In this paper, we introduce a new mechanism for
covert communication using the processor branch pre-
diction unit. Specifically, we demonstrate how a trojan
and a spy can manipulate the branch prediction tables
in a way that creates high-capacity, robust and noise-
resilient covert channel. We demonstrate this covert
channel on a real hardware platform both in Simulta-
neous Multi-Threading (SMT) and single-threaded set-
tings. We also discuss techniques for improving the
channel quality and outline possible defenses to protect
against this covert channel.

1. INTRODUCTION
Modern computer systems are typically shared by

multiple applications which often belong to different
security domains. Therefore, to provide security, sys-
tem software layers often impose restrictions on the use
of hardware resources. For example, the Android mo-
bile Operating System (OS) requires users to explic-
itly grant permissions for each application. Specifically,
some applications can be granted access to the network,
while others can be restricted from performing outside
communication, but still can read sensitive user data.
To illustrate this scenario, consider two applications
running concurrently on the same system: a password
manager and a weather widget. The password manager
should not be allowed to communicate over the network
to prevent password leakage. While the password man-
ager application can by itself be buggy, or even contain
embedded backdoors, the user passwords will remain
secure as long as the OS correctly enforces network ac-
cess permissions. At the same time, it is essential for
the weather widget to have network access enabled to
properly support its functionality.

This situation motivates the following question. How
can a malicious or a compromised application transfer
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data to another malicious application in the absence of
a direct communication that is restricted by the OS?
One possible way to achieve this goal is to utilize a
covert communication channel through processor hard-
ware resources that are shared by both applications. In
particular, a covert channel can be created between a
trojan process and a spy process running on the same
processor; to transmit sensitive information, the trojan
alters the state of a shared hardware resource in order
to intentionally modulate events on that resource. On
the receiving side, the spy performs measurements to
determine how the trojan is accessing the resource al-
lowing it to receive the modulated events. We present
our threat model and assumptions in Section 2.

In this paper, we present a covert channel through
branch predictor that is based on two observations.

• The state of a branch predictor is shared
by all processes executing on the same core.
When a program executes a large block of taken
or non-taken branches, the predictor structures
are put in the corresponding state. The next time
this program executes the same block of branches
with the same outcomes, its branch misprediction
rate will decrease significantly, leading to shorter
execution time. In other words, the branch predic-
tion unit can be controlled to reduce the execution
time of blocks containing branch instructions with
appropriately configured outcomes.

• The state of a branch predictor is pre-
served across context switches. When a con-
text switch occurs, the internal structures of the
branch prediction unit do not get invalidated.
Thus, they can affect the branch prediction accu-
racy of the newly scheduled process (a spy). In an
SMT environment where the spy executes concur-
rently with the trojan on the same core, the sec-
ond property is not critical for the attack, as the
spy can probe the shared branch predictor while
the trojan sets its state.

Using these observations, we implement covert chan-
nel in the following way. When the trojan intends to
send a one to the spy, it executes a large block of con-
ditional branch instructions with taken outcomes). At
the same time, the spy continuously executes a large
block of taken branch instructions and measures its ex-
ecution time. When the execution time is below average
due to the lower branch misprediction rate (because the
trojan put the predictor to the taken state), the spy de-
tects the transmission of one. Transferring the value of
zero between the trojan and the spy is achieved in the



same way, with the trojan intentionally executing not-
taken branches. The spy executes the same code block
of taken branches, thus experiencing a larger number
of branch misprediction. Consequently, spy’s execution
time for this code block increases, allowing it to infer
the transmission of zero. We present the channel and
evaluate it on a real processor in Sections 3 and 4.

Having shown the feasibility of the channel, we dis-
cuss in Section 5 possible techniques to prevent its use
in practice. In particular, we propose partitioning for
SMT settings, and BPT flushing on a context switch.
Our future work will explore the security properties and
performance impacts of these suggested solutions.

Our work contributes a new covert channel through
the branch prediction unit. Although other covert chan-
nels have been demonstrated using shared microarchi-
tecture resources, to the best of our knowledge only
one previous effort considered covert channel through
branch predictors [12]. We compare our covert channel
to the work of [12], and review other related work in
Section 6.

The main contributions and the key results of this
paper are:

• We demonstrate the feasibility of a covert commu-
nication channel through shared branch predictors
on a real hardware platform.

• We show that covert channels through branch pre-
dictors can be created in both SMT and single-
threaded settings.

• We demonstrate the resilience of this covert chan-
nel to noise from other concurrently running ap-
plications and its ability to achieve high commu-
nication bandwidth.

• We suggest possible improvements to the channel,
as well as techniques to mitigate it.

2. THREAT MODEL AND ASSUMP-
TIONS

We assume that two compromised (or malicious) ap-
plications are running in the system — a trojan and a
spy. We assume that the trojan is a more privileged pro-
gram that has access to sensitive data that it attempts
to transmit to the spy program. No other communi-
cation channels (through the network, shared memory,
file system, etc.) exist between the trojan and the spy,
therefore covert channel represents the only means for
these programs to communicate with each other.

We assume that the trojan and the spy are co-located
on the same core, either on different SMT contexts, or
time sharing the use of the core. This assumption is
needed because the branch prediction unit is shared on
the same physical core, but not across different cores of
a multi-core processor.

The system software is assumed to be uncompro-
mised, so that it properly enforces access control and
preserves legal information flow. The two processes
need only normal user level privileges. The channel
does not require access to performance counters, and
therefore would work even if these are disabled as is
commonly done on cloud systems [26]. However, if the
access to performance counters is available, than a sig-
nificantly better signal quality can be achieved.
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Figure 1: Schematic of a gshare predictor

3. COVERT CHANNEL THROUGH
BRANCH PREDICTOR

In this section, we describe a generic branch predictor
design and its features that make the secret data com-
munication between the trojan and the spy possible.
After that, we describe the construction of the covert
channel through branch predictor in detail. We start
by overviewing our experimental setup and evaluation
methodology.

3.1 Evaluation Methodology and Experi-
mental Platform

We demonstrate the covert channel through branch
predictor on real hardware, rather than on a micropro-
cessor simulator. While a simulator can provide some
additional insight into the behavior of the branch pre-
dictor, it could also oversimplify important hardware
features present in real chips.

All our experiments were performed on a machine
with an Intel Core i7-4800MQ CPU (Haswell microar-
chitecture) clocked at 2GHz. The machine has 16GB
of DDR3 memory clocked at 1600 MHz. We consider
systems with and without SMT - to evaluate the latter
we disabled the SMT support. We also consider the
effect of interference from different programs. The ma-
chine uses Ubuntu 14.04.2 LTS operating system, with
a generic GNU/Linux kernel version 3.16.0-31.

3.2 Dynamic Branch Predictor
Modern high-performance processors are deeply

pipelined. Therefore, a significant number of cycles is
needed to resolve the outcome of conditional branch
instructions. To avoid stalling the pipeline, branch pre-
diction is performed to allow the processor to specu-
latively execute instructions before the branch is re-
solved. The branch prediction unit plays a critical role
in achieving high performance of today’s CPUs, because
every branch misprediction results in significant loss of
instruction execution opportunities as well as overhead
to undo the side effects of the erroneous speculation.

A number of different schemes for branch predic-
tion have been proposed. They range from simple
static predictors, to complicated neural-network based
predictors [13]. However, most of currently available
microprocessors rely on some form of correlating two-
level predictors, such as gshare [14]. Two-level predic-
tors combine the global history of recently executed
branches with local history for individual branches.
Such a combination allows this predictor to use differ-
ent saturating counters for the same branch, depending
on the control flow path leading to the execution of
a branch being predicted, resulting in highly accurate



predictions.
Figure 1 presents a schematic of a gshare predic-

tor [14]. Note that our covert channel will work with
any predictor, we describe the gshare predictor because
of its wide use and to provide a concrete example. The
global history register is a shift register that accumu-
lates the history of several recently executed branches.
The Branch Pattern Table (BPT) is a relatively large
table of two-bit saturating counters, with the counter
values indicating a prediction range from strongly not-
taken to strongly taken.

The indexing function XORs the program counter
of the branch that is being predicted with the bits
from the global history register. Thus, the resulting
indexed BPT entry is chosen based on both global and
local branch information. One of the most important
properties of any branch predictor is the size of the
BPT. Branch predictors with larger table sizes have
fewer collisions (the case when two different branches
get mapped to a same table entry), thus exhibiting a
better prediction accuracy.

3.3 Transmitting Data through Branch
Predictor Structures

Transmitting data through the branch predictor
covertly is possible due to an important design consid-
eration that is true for most of the systems and branch
predictor implementations today. Specifically, the BPT
is not flushed on a context switch. Several branch pre-
dictor designs [6] have been introduced that considered
context switches that erase the branch history data from
the old context in the BPT. However, these designs have
not been adopted in commercial products, as no perfor-
mance benefits were observed [4].

Since the BPT is not flushed, the branch history from
the old context remains available to the newly scheduled
process. Such a situation allows the trojan application
to communicate to the spy by setting the BPT into one
of (at least) two pre-agreed on states. For example, the
trojan can set all of the BPT entries to the strongly
taken state to communicate a 1. After the spy process
is context-switched into the CPU, it can observe the
BPT state created by the trojan by performing a series
of measurements.

This general technique is also available in Simulta-
neously Multithreaded (SMT) processor cores. SMT
cores allow the processor to fetch instructions from two
independent processes simultaneously. The SMT cores
share the same branch predictor hardware and its data
structures among the threads. While it is possible to
design a branch predictor with split data structures for
the simultaneous threads, such splitting does not bring
significant performance improvements [19] and thus is
not typically used. In Section 4, we demonstrate the
covert channel with both enabled and disabled SMT.

3.4 Building the Covert Channel
In order to demonstrate the feasibility of covert chan-

nels through branch predictor, we execute two programs
on the same physical microprocessor core, the trojan
and the spy. The purpose of the trojan is to fill the
branch predictor’s BPT in such a way that it affects
the time of execution of the code blocks enough to dis-
tinguish it from the noise introduced by the Operating
System or other programs that are scheduled to execute
on the same core.

In particular, the trojan executes a block of exclu-

(a) Main loops
of the trojan and
the spy processes

(b) Taken code
block

(c) Not-taken
code block

Figure 2: Code used to fill and probe BPT

sively taken conditional branch instructions to transmit
one, and a block of not-taken branch instructions to
transmit zero. The spy process, when it receives a time
slice from the operating system to execute on a CPU,
probes the context of the BPT by executing a block
of taken branch instructions and measuring the execu-
tion time. If the spy process experiences performance
slowdown, this indicates mispredictions implying that
the trojan left the predictor states as not-taken intend-
ing to transmit a zero. Alternatively, when the block
of taken branches executes quickly, the transmission of
one is determined. Note that the spy measures only the
execution time (or alternatively branch mispredictions
through performance counters) of the starting period of
its execution slices, which is impacted by the residual
information left in the BPT by the trojan.

Figure 2 presents an example trojan and spy code
that can be used for filling and probing the BPT re-
spectively. Figure 2a shows the main loops of both pro-
grams. The trojan code executes an infinite loop, al-
ternating the transmission of zeroes and ones. During
odd seconds, it primes the BPT with taken predictions
(in order to transmit one), and during even seconds, it
primes the BPT with non-taken predictions to transmit
zeroes.

Figures 2b and 2c present the code blocks used to
fill the BPT of the branch predictor with taken and
not-taken predictions respectively. Both figures show
the pattern that is used to deploy much larger blocks.
We observed that the best covert channel quality is
achieved when we use larger code blocks for the trojan
and smaller ones for the spy.

The goal of the trojan is to fill as many BPT en-
tries with desired branch prediction data as possible. A
large code block (several hundred thousand branches) of
branch instructions is used for this purpose. Note that
a short loop with a few branches that executes for many
iterations cannot be used, because the branch outcomes
will be written repeatedly into a few BPT entries.

The act of probing the BPT by the spy uses a simi-
lar taken branch code block as that used by the trojan,
although the block size may be different. Another dif-
ference is that the spy’s code is not executed constantly.
Instead, it is only executed once for each probing time,
recording the timestamp counter data. When the spy
completes the execution of the block, it relinquishes the
rest of its CPU timeslice. We use the sleep() function



Figure 3: Timing of the branch code block in the spy
process, reflecting the data sent by the trojan.

for this purpose. The duration of the executed block is
chosen to ensure that the branch predictions performed
within that block are affected by the residual state from
the trojan, and not by the history that is already built
by the spy during the current slice.

We inserted a uniformly distributed number of nop

instructions (from 2 to 8) between the conditional
branches in both trojan and spy processes. Primarily,
we used this approach to improve the chance of filling
in more entries in the BPT. Since our experiments are
performed on real hardware, we have no knowledge of
the exact details of the BPT indexing function. We ob-
serve that adding the nops increases difference between
the ones and zeroes measured by the spy, indicating
an improved quality of the covert channel signal. If we
invest in reverse engineering the branch predictor hash-
ing function, we can more efficiently prime the BPT
to maximize the bandwidth of the channel, and even
communicate multiple bits per prime-probe cycle.

Figure 3 presents our initial results from the exper-
iment when we executed the trojan and the spy pro-
cesses in a manner described above. The x-axis repre-
sents the time (in seconds) from the moment the spy
program starts probing the BPT. The y-axis represents
the number of cycles spent executing the branch code
block. For this particular experiment, the trojan exe-
cutes 500 thousand branch instructions and the spy ex-
ecutes 30 thousand branches. The graph shows a clear
separation between the two states being communicated,
demonstrating the feasibility of the channel.

3.5 Covert Channels in Single-Threaded
and SMT Modes

In most microprocessors, each core is equipped with
its own branch predictor and its own BPT. It is there-
fore reasonable to assume that the data transmission
mechanism described above will only work in the case
when the trojan and the spy are executed on the same
physical core. We confirmed this with our experiments
- no covert channel was observed when the trojan and
the spy were running on different cores. However, in
some settings this may not be a significant limitation,
because the operating system can allow user applica-
tions to set process’s affinity, as in GNU/Linux [18].

A single physical core can either run in single-thread
mode, or in Simultaneous Multithreaded (SMT) mode.
When the core executes in the single-thread mode, it
fetches the instructions only from one process at a time.
As we pointed out earlier in this section, the branch pre-
dictor hardware is usually shared among different pro-
grams running on the same core sequentially. Branch
predictor’s data structures are not flushed or invalidated
on context switches. Note, that before actual context
switch happens, some operating system code must be
executed. However, we discovered that this code does

not cause significant BPT pollution as demonstrated in
our results so far, which include these effects.

For a single-threaded core setting, it is very impor-
tant to achieve consecutive scheduling of the trojan and
the spy. Otherwise, if another program gets executed
between them, this program will populate the BPT with
its own branch information, removing data put by the
trojan. In this case, there is a high probability that
the spy would not be able to extract the data from the
BPT. For our experiments we achieve the consecutive
scheduling by dedicating a CPU core only to these two
programs, using the default operating system function-
ality. Since the trojan is constantly running its block of
branches and the spy runs its block just once before forc-
ing the context switch, we obtain an ideal scheduling.
In particular, the spy interposes the trojan’s execution,
probes the BPT and switches back to the trojan.

In case when the SMT is enabled, the trojan and
the spy do not need to achieve the strict consecutive
scheduling. In contrast, they need to achieve simulta-
neous scheduling, when they both are running on the
same physical core, but using different hardware thread
contexts. For our experiments under the SMT condi-
tions, we assign both processes to isolated virtual cores
(a single SMT-enabled physical core is represented in
the operating system as two virtual cores). In this case,
the trojan and the spy execute on the same physical,
but on different virtual cores.

The presence or the absence of SMT in the system
changes the way the information is transmitted from
one process to another. However, the change in the
source code of both programs is not required. A detailed
comparison of SMT and non-SMT covert channels is
presented in Section 4.2.

4. RESULTS AND DISCUSSION
In this section, we present the results of our exper-

iments obtained by executing the spy and the trojan
programs on the hardware platform as described in Sec-
tion 3.4. First, in order to confirm the expected be-
havior of the branch predictor, we collected low-level
information on the number of executed branch instruc-
tions and the number of branch mispredictions, instead
of relying solely on the timestamp counter. Then, we
examine the behavior of our covert channel under var-
ious systems configurations, focusing on the resilience
to noise and consistency of the timing channel. We also
analyze the properties of our covert channel both in
single-threaded and SMT execution environments.

4.1 Branch Mispredictions and Execution
Time

In our earlier experiment (shown in Figure 3) we
demonstrated the behavior of the spy process under
the influence of the trojan. When the trojan executes
branch instructions that have the opposite outcomes
compared to the spy, the spy experiences a slowdown.
On the other hand, when the trojan executes branches
with the same outcome as the spy, the spy experiences a
speedup. These effects were observed using the times-
tamp counter. However, the value of the timestamp
counter does not provide any direct insight into the
sources of performance gain or slowdown.

To get a better insight into the reasons for the per-
formance differences, we integrated the functionality for
reading the performance counters within the spy pro-



(a) Execution time dependency on the misprediction rate
in the spy

(b) Signal-to-noise comparison in measured misprediction
rate

(c) Signal-to-noise comparison in measured execution
time

Figure 4: Spy’s measurements demonstrating trojan’s
impact on the branch prediction rate and execution
time.

cess. We then repeated the same experiment and ob-
tained both the timestamp counter data and the branch
misprediction rate. We recorded the total number of
branch instructions and the number of branch mispre-
dictions.

For comparison purposes, we also evaluated the sys-
tem where the spy process runs alongside a program
that exercises the branch predictor in a random man-
ner without creating special conditions for the spy. We
used the cpuburn [16] benchmark for this purpose. The
cpuburn benchmark serves as a source of branches with
realistic outcomes to fill the BPT with data that is rep-
resentative of normal program behavior.

The results of these experiments are presented in Fig-
ure 4. Figure 4a demonstrates the changing patterns in
both the branch misprediction rate and the number of
execution cycles. Figure 4b shows the comparison of the
covert channel signal to the normal noise, measured in
terms of branch misprediction rate. Finally, Figure 4c
demonstrates the comparison of the signal to normal
noise levels, measured in cycles.

The data presented in Figure 4a reflects the depen-
dency of the number of cycles that the spy process
spends running the branch code block (measured in pro-
cessor cycles) on the number of branch mispredictions.
It is clear from these graphs that the execution time
is dependent on the misprediction rate. As expected,
a higher misprediction rate results in higher execution
time.

Instead of measuring its execution time, the spy can
use branch-related performance counters as a measure-
ment mechanism. In fact, relying on the performance
counters provides higher measurement accuracy. The
covert channel signal measured with branch-related per-
formance counters is consistent and has excellent signal-
to-noise ratio, as we demonstrate later in this section.
However, reading performance counters may require ad-
ministrative privileges from the spy. In fact, whether
such privileges are required or not depends on the par-
ticular hardware, operating system and even hardware
configuration. For example, according to the Intel’s Ar-
chitecture Software Developers Manual [10], a particu-
lar configuration set allows or disallows user-level ac-
cesses to the performance counters. However, we con-
servatively assume that the performance counters are
not always available and target the timestamp counter
as our main measurement mechanism.

Based on the collected data, we make several obser-
vations:

Observation One.
The trojan’s activity significantly affects the mea-

sured branch misprediction rate of the spy process.
When the trojan is executing branch instructions with
different outcomes than spy’s, the branch misprediction
rate of the spy process significantly increases. In par-
ticular, the mean value of the high peaks is 62.06%. At
the same time, when the trojan executes the branches
with the same outcome as those executed by the spy,
the misprediction rate decreases to very low values - the
mean value of the low peaks is just 0.21%. The implica-
tion of this statistics is that almost all of the branches
are correctly predicted. Such a high ratio between the
low and the high values (nearly 300x ) contributes to the
noise resilience and capacity of the covert channel.

Observation Two.
Although the number of cycles required to execute

the spy precisely repeats the pattern of the high and
low peaks measured in terms of the branch mispredic-
tion rate, the difference between high and low peaks
tends to be less significant, as expected. In particular,
the mean high peak is 852748.02 cycles, and the mean
low-peak is 547929.72 cycles. The ratio between these
two values is only 1.56x, which is much smaller than
what we observed when the misprediction rate was mea-
sured directly, perhaps indicating a smaller noise mar-
gin. Nevertheless, this difference is substantial, allowing
clear distinction between the bits being transmitted.

Observation Three.
The signal depicted on Figures 4b and 4c are highly

consistent: the signal values have a little deviation
across different bits of the same value. This is also true
for the values of the noise signal. To quantify the con-
sistency of the signal, we calculated the coefficient F.
We define it as:

Fmax = σmax
|μmax−μmin| , Fmin = σmin

|μmax−μmin| (1)

Where σmax and σmin is the standard deviation for the
high and the low peaks and μmax and μmin are the mean
values of the high peaks and the low peaks respectively.

Intuitively, this value shows how spread out the mea-
sured values in the peaks are, compared to the range of
the signal. The smaller value indicates a more consis-



tent measurement. The F values of the high and the
low peaks of the branch misprediction rate are 0.22%
and 0.08% respectively. For the cycles measurement,
the value of F is 5.16% and 1.65% for the high and the
low peaks, respectively.

Observation Four.
We observed that the noise level stays between the

two peaks of the amplitude of the signal. It allows the
spy to utilize both peaks of the amplitude for the signal
transmission (for transmitting either 0 or 1 ). At the
same time, since it is easy for the spy to distinguish the
noise from the transmitted signal, asynchronous trans-
mission can be used. This is a very desirable property
for a covert channel, since the spy and the trojan do
not have a communication channel to arrange the ac-
tual transmission time.

Observation Five.
In order to assess the relationship between the signal

and the noise, we propose the coefficient G defined as,

G = Max
( |μmax−μnoise|

μnoise
, |μmin−μnoise|

μnoise

)
(2)

where μmax is the mean of the maximum peaks, μmin is
the mean of the minimum peaks, and μnoise is the mean
of the noise. This coefficient shows how easy it is for
the spy to differentiate the signal from the natural noise
level. This coefficient was computed using only one of
the two peaks to reflect maximum possible value of the
coefficient. Larger values of G imply better results.
The value of G for the experiment shown in Figure 4 is
5.34 for the branch misprediction rate, and 0.42 when
measured in cycles.

Observation Six.
Based on the collected data (execution cycles and the

number of mispredictions) we calculated the cost of the
branch misprediction. We observed the misprediction
cost is within the range between 10 and 18 cycles. Simi-
lar numbers have been reported for Haswell CPUs in [8].

In summary, the presented characteristics of the
covert channel demonstrate that the covert channel
through branch predictor is consistent, noise resilient,
and has a high capacity.

4.2 Covert Channel in the SMT Mode
For the second experiment, we executed the spy and

the trojan on the same physical core, but on two dif-
ferent virtual cores (hardware contexts) in SMT mode.
The results are presented in Figure 5: Figure 5a uses
branch misprediction rates while Figure 5b shows cy-
cles.

These results show that the branch predictor covert
channel exists in SMT mode as well, but with a slightly
decreased consistency. The noise level shows the same
pattern and levels.

At the same time, the results of cycle measure-
ments generally repeat the pattern exhibited in single-
threaded mode. However, all results impacted by the
trojan now rise above the noise level. Such increase in
the number of cycles can be attributed to effects such
as competition for the instruction caches. In the SMT
mode, the two threads are executing at the same time.
The trojan has a relatively large code size and is con-
stantly executing in a loop. As a result, the spy exe-
cuting in parallel has to compete for the cache capacity

(and other shared CPU resources) with the trojan.
The covert channel on SMT exhibits attractive char-

acteristics. The value of F coefficient is 7.6% and
8.67% for the high and the low peaks respectively when
branch misprediction rate is measured. These values are
12.62% and 11.88% when the the execution cycles are
measured. The value of G coefficient is 7.43 and 0.67
for the branch misprediction rate and execution cycles
respectively.

(a) Signal-to-noise comparison in misprediction rate

(b) Signal-to-noise comparison in execution time

Figure 5: Covert channel characteristics when the spy
and the trojan run on different virtual cores in SMT
mode.

4.3 Covert Channel under Realistic Con-
ditions

Finally, in order to assess the applicability of the
covert channel on systems with realistic workloads, we
executed the trojan and the spy on a single core with the
Firefox browser, playing a YouTube video in the back-
ground. We ran this experiment under single-thread
configuration. The results of this experiment are pre-
sented on Figure 6. The branch misprediction rate is
shown on Figure 6a, and execution cycles are presented
presented in Figure 6b.

Note that in all prior experiments we used the cpub-
urn benchmark in order to obtain the nominal noise
level data. The purpose of running this benchmark in
the background was to remove the data from the BPT
and execute the spy under a normal state of BPT.We do
not need to run such benchmark for this experiments,
because the browser is running on the same core and
plays the role of the noise benchmark in this exper-
iment. The browser was executed during all stages of
the experiment, including filling the BPT by the trojan,
probing it by the spy, and capturing the noise.

The F coefficient of the covert channel under this
scenario was measured as 2.47% and 5.29% for the high
and the low peaks for the branch misprediction rate
measurements. The value of this coefficient was 9.53%
and 6.56% when the execution cycles were measured.
The value of G coefficient was measured as 0.97 and
0.32 for the branch misprediction rate and execution



cycles respectively. Thus, the covert channel continues
to be effective.

(a) Signal-to-noise comparison in misprediction rate

(b) Signal-to-noise comparison in execution time

Figure 6: Covert channel under realistic load. The Fire-
fox browser is executed on the core while tojan trans-
mits the signal.

5. MITIGATING BRANCH PREDIC-
TOR BASED COVERT CHANNELS

While detailed analysis of protection and mitigation
techniques is beyond the scope of this paper, we outline
some general protection approaches in this section. The
following techniques can be considered to mitigate the
covert channels created through shared branch predic-
tors. First, it is possible to save the branch predictor
state of each process and restore it on every context
switch. This way, one process cannot interfere with the
predictor state used by another process. However, this
will add some slowdown to the context switching pro-
cess. Another alternative is to simply flush the BPT on
every context switch, but that requires additional hard-
ware and may introduce extra delays. Note that this
technique can only protect against single-thread covert
channel.

In order to mitigate the covert channel in SMT set-
ting, the BPT can be physically partitioned between
multiple thread contexts (thus achieving isolation), but
this can have negative impact on branch accuracy and
performance. Finally, unusual anomalies such as all-
taken branches can be detected by hardware and such
programs can be terminated, similar to [9]. However,
it is difficult to correctly detect all anomalies, since
the trojan can intentionally introduce some randomness
into its activity to evade the detection.

6. RELATED WORK
Covert channels through shared microprocessor re-

sources have been explored in several recent efforts.
Wang and Lee [24] presented covert channels using ex-
ceptions on speculative load instructions and shared
functional units on SMT processors. Wu et al. [25] de-
scribe a covert channel that is based on the Intel Quick

Path Interconnect (QPI) lock mechanism. Ristenpart
et al. [20] present a cross-VM covert channel that ex-
ploits the shared cache. Covert channels based on the
use of memory bus were presented in [21]. Wang et
al. [23] presented a covert channel through shared mem-
ory controllers and proposed some techniques to close
it. Their solution to eliminate interference across secu-
rity domains is based on per-domain queuing structure
and static allocation of time slots in the scheduling al-
gorithm.

A number of other efforts addressed the problem of
mitigating timing covert channels. In [3], Chen and
Venkataramani present CC-Hunter - a framework for
detecting the presence of covert channels by dynami-
cally tracking conflict patterns over the use of shared
processor hardware. As CC-Hunter is based on detect-
ing contention, it is not directly applicable to detecting
the covert channels through branch predictors proposed
here, because these channels are not created based on
contention. Another fundamental approach that builds
the system from the ground up to detect the presence
of side channels [5], covert channels, and other unin-
tended information flows is GLIFT (Gate-level informa-
tion flow tracking) [22, 17]. While shown to be effective,
GLIFT requires significant rearchitecting and redesign
of the entire system.

Hunger et al. [12] outlined a covert channel through
branch predictor that is constructed in a different way
from ours. In particular, the trojan in [12] transmits
a one by executing a large number of branches taken
with 50% probability, and it transmits a zero by busy-
waiting. The trojan’s activity during the transmission
of a one creates the branch predictor resource con-
tention, which is detected by the spy using performance
counters. In contrast, our covert channel does not rely
on branch predictor contention, but uses residual state
of the branch pattern table (BPT) that is left from the
Trojan after a context switch. In addition, we demon-
strated that our covert channel can be constructed with-
out relying on performance counters by simply monitor-
ing the execution time of the spy. Finally, we studied
the branch predictor covert channel under various set-
tings with realistic system workloads.

While the focus of this paper is on covert channels,
previous work studied side-channel attacks through
branch prediction units [1, 2]. Therefore, in the fu-
ture it is important to consider mitigation techniques
that will close the possibilities for both side channels
and covert channels through shared branch prediction
units and other shared resources. This is an impor-
tant problem for both traditional environments (with
OS and VM based isoalation), and systems that sup-
port stronger isolation guarantees [15, 7, 11].

7. CONCLUDING REMARKS
We introduced a new covert channel that uses dy-

namic branch predictor structures to perform secret
communication between the trojan and the spy pro-
cesses. The key idea is that the trojan process can fill
in the predictor structures by taken or non-taken pre-
dictions, thus impacting the branch prediction accuracy
and the execution time of the spy process as it executes
a block of code composed of taken branches. In order
to detect timing differences, the spy process can either
measure its total execution time (using a timestamp
counter), or can read the performance counters to di-



rectly observe the branch misprediction rate (provided
that is has permissions to do so). We demonstrated
that a practical covert channel is possible in both cases.
In addition, we show that the channel has high capacity
and is resilient to interference from external processes.
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